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TECHNICAL NOTE 3229

THE SMALI-DISTURBANCE METHOD FOR FIOW OF A COMPRESSIBLE
FLUID WITH VELOCITY POTENTTAI. AND STREAM FUNCTION
AS INDEPENDENT VARTABLES

By Carl Kaplan
SUMMARY

The equations of two-dimensional compressible flow are treated
according to the Prandtl-Busemann small-disturbance method. In contrast
to the usual procedure, the independent variables are the compressible
velocity potential and stream function and the dependent variables are
the rectangular Cartesian coordinates in the plane of flow. The six
first-order differential equations corresponding to the first three iter-
ation steps are put into complex-vector form. The particular integrals
of the resulting set of three equations are then directly obtained. As
an example, the general results of the analysis are applied to the case
of subsonic compressible flow past a sinusoidal wall of small amplitude.

INTRODUCTION

The problem of the integration of the equations of compressible flow
past a prescribed solid boundary has been treated in numerous papers and
in several diverse ways. With the exception of the hodograph-
transformation method, the equations are usually solved by methods of
successive approximations. One of these, initiated by Janzen and
Rayleigh, starts from the incompressible-flow solution and develops the
compressibility effects in a series of powers of the undisturbed stream
Mach number. This method is restricted to the subsonic range, since the
differential equations of the process are always of the elliptic type.

In general, this method yields the best results for flows past thick
shapes for which the critical stream Mach number is much less than unity.
In contrast, the Prandtl-Busemenn smsll-disturbance method of iteration
in terms of a smell parameter starts from the undisturbed flow, the first
step being the well-known Prandtl linearized solution. This method is
best suited to thin profiles for which the critical stream Mach number

is nearly equal to unity and, from the beginning, yields a good approxi-
mation to the desired rigorous solution. Both the Janzen-Rayleigh and
the Prandtl-Busemann methods are applicable not only to plane but also
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to axisymmetric subsonic flows. The Prandtl-Busemann procedure has also
been utilized for the calculation of plane and axisymmetric supersonic
flows. A good discussion of these two iterative procedures, including
a number of basic references, is given in reference 1.

The author has recently considered the problem of plane incompress-
ible flow past an infinitely long, sinusoidal waell of arbitrary ampli-
tude (ref. 2). It was found that this problem could not be treated in
the physical-flow plane but had to be transferred to the plane of veloc-
ity potentiel and stream function. In this plane, the problem was not
only successfully treated by the small-disturbance method but also, the
solution was rigorously expressed in the form of a nonlinear integral
equation. This unexpected result has prompted the present investigation
of the form of the Prandtl-Busemann small-disturbance equations with the
velocity potential and the stream function as independent variables.

The equation of continuity and the condition of irrotationslity form the
basis of the procedure. EFach iteration step consists then of a pair of
first-order differential equations of the Cauchy-Riemsnn type rather than
a single second-order differential equation of the Iaplace or Poisson
type. These pairs of equations, moreover, can be put into complex-
vector forms and their particular integrals obtained in a straightforward
manner. The present paper contains the results of this investigation
inclusive of the third-order step. The example of subsonic flow past a
sinusoldal wall of small amplitude is utilized to illustrate the general
results of the analysis. No counterpart of the integral-equation approach
of reference 1 could be found.

ANATYSTS

The requirements of continuity and irrotationality lead to the
relations

~
u= ¢x = %? wy
. . (1)
v = ¢§ = - %? ¥y
where o
u,v velocity components in direction of x- and y-axes,

respectively
X,y rectangular Cartesian coordinates in f£low plane
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p density of fluid

Poo density of fluid in undisturbed flow
¢ velocity potential

¥ stream function

The subscripts denote differentiation with respect to the designated
variables. The quantities x, y, @, V¥, u, end v are nondimen-
sional with a characteristic length associated with the solid boundary
as unit of length and the speed U of the undisturbed stream as unit
of velocity.

From Bernoulll's theorem there follows the relation

1
2o @
where
M, Mach number of undisturbed stream
q nondimensional speed of fluid
Y ratio of specific heats at constant pressure and

constant volume

The introduction of ¢ and V¥ as independent variables leads to
the following relations in place of equations (1):

Y
™

F (3)
pco

S

For the purpose of deriving the lteration equations of the small-
disturbance method, let

x =@+ ex) + €%, + e3x3 ...

(%)
Y=Y+ ey + e2y2 + e3y3 + ...
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where x, and y, (m=1,2, 3. . .) are functions of the independ-
ent varisgbles ¢ and V¥ and where e 1is a suitable small parameter
which serves to regulate the course of the iteration process.

Now,
2 2 .
2 Xy * Yy

Q- = 5 (5)
Cegry - xy7g)

and

x¢=l+exl¢+e%12¢+e'3x3¢+ . . .

X¢=€Xl¢+€ex2w+€3}{5¢+. .

( (6)
Y¢=eyl¢+e2y2¢+e5y3¢+. . .
yw=l+eylw+e2y2w+e 311!"" . . J

Substituting equations (6) into equation (5) yields

(12 -1-= —2€Xl¢ + 62(3Xl¢2 + acu,ylgg + Xlw-z - 21{2¢) + 265(-2]{l¢3 -

¢ 191g ~ Xy T SEagtog T Frydog + Xopag t

ey - g Y T )t ™
Also, from equation (2),

- 2
§—=l-%Mm2(q2-l)+287Mmh'(q2—l) -
co

(2 -G - 29) " 6(q2

3
i A2 -1 . .. (8)
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By means of equetions (5), (6), (7), and (8), equations (3) yield the
following sets of relations when the coefficients of the various powers
of e are equated to zero: )

By = Ty |

(9)
X1y = Vg
52X2¢ = Yoy + %Mma%lq‘?. _ EE + (7 + l)Mmz]xlg;;}
(10)
2
Xoy = Vpg + M X119
2 2 W
52x5¢ =Yy + Mme{)fl¢y2¢ - (l + -]2=B + Z-—Z-—Jl M )xl¢yl¢2 -
2 2 1.4 2
ES + (y+ 1)Mm]xlm + |:-§B + (y + 1M, -
%(7 + l)Mw)“‘ + 13—-(7 + l)eMaE\xlf} \f (11)

Xz = V3¢ * ng[% y1;153 + Xogiig + *1g¥og "

(l + %ﬁz + L "2' = sz)xlf}’l%
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By defiﬁing
X+ 5 ¥n = 7 xn-%vn=fn
g+ ipy = w ¢ - ipy =W

and msking use of the symbolic relations

equations (9), (10), and (11) can be expressed in the following complex-
vector forms:

217 =0 (12)
Z—:-Z_+_l.b_d.°;il.z 2 7. 1 2 :Z-I'lMoo—z
27 8 32 o “lw + Iw?iw) - )"_" Moo 1+ n _2—' 1w

2_ (- — 2 2 + 1., 2\ 2 _ 2
Tz = - %’Mm Zrﬁ(zzﬁ-+ Zgw) - %’Mm (} + %B + L 7 M )ZIW 2w " %W /-

4
1., 2.2 =_\? Mo, = =
33 e P (v - B2%) ‘%(7+1)E2"(le+zlﬁ)(22w+z2ﬁ+Z2w+
z 1y 2|1g2 Mt,‘,2 5 w
Tow) + 1= M, |58 A R
? (14)

N
(7 + 1f I:% (2 + Z157)
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Corresponding to these equations are the following second-order partial-
differential equations:

Zvg = O (15)
Mm
Zoyw = - z 1 1 ;5— X1 071 g (16)
N
M 2
s = - L e | (210 + g -
E B2+ (7 + :L)Mw2:| xl¢2 21dg + X1g%odd (17)

Note that, when ¢ and V are the independent variables, the basic
iteration equations (12), (13), and (14) for x and y are of the

first order. 1In contrast, when x and y are the independent variables,
the basic iteration equations for ¢ or ¥ are of the second order and
are similer to equations (15), (16), and (17).

CALCULATTION OF PARTICULAR INTEGRALS

Equations (12), (13), and (14) can be integrated without difficulty.
The general solutions are then obtained by the addition of arbitrary func~
tions of w +to the particular integrals. These arbitrary functions are
of the nature of constants of Integration and are chosen in such a way

that the boundary conditions of the problem under consideration are
satisfied.

Both the particular and the general solution of equation (12) there-

fore is simply that 2z 1s a function of w only. A particuler integral
of equation (13) can then be written as follows:

—_ 2 -
22 = e ——8-— —ﬁ—é-— E(W [d W)le + (Zl + l) le] -

5
%Mmz <1 + Z—-—Z 1 %) f E_Wedw (18)
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By substituting this expression for z, into equation (lll-), the fol-
lowing particular integral can be obtained:

1w 32 2 1 @ L 2

4 2
z3=lM2(1+Bz>fE_3dﬁ+Z—+—lM°° M21+Li—lb5';-[z + T+
) o !

2
%(W - 17)'2'1‘%{2ﬁ2+%[2+ 8%+ (y + 1) M-g—+
B

I 2
Mol (= 2
%(7+1) 2 (W-W)zlw3+':3+s +2(7+1)M°°?—-

2
1 Mo |=, 2 2 M,

.

3] 2
1 M, - 2. 2,2 Mool [ 3

~

2
El+ Z7 + (¥ - w)zlw] Zyww T [:Zl"' Z; +

/_:\

|+

'—l

Zole
b=
~—%

A

{ P

L (o W)Elﬁjlzlwilﬁ (19)
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The analysis thus far has not been restricted and applies equally
well to both subsonic and supersonic flows. Actually, of course, Xj

and y; as functions of ¢ and ¥ are radically different for the

two types of f£low and 52 = Mw2 - 1 1in the case of supersonic flow. In

order to illustrate the application of the general results to a partic-
ular £low problem, the followling section contains a treatment of the

problem of subsonic compressible flow past a sinusoidal wall of small
amplitude.

SUBSONIC FLOW PAST A SINUSOIDAL WALL
The equation of the solid boundary is

Y = € cos X ’ (20)

and the flow is assumed to be In the direction of the positive x-axis.
The undisturbed stream velocity U and the wave length A in radians
are utilized as units of wvelocity and length, respectively. The param-
eter of the problem is ¢, the amplitude of the wavy wall in radians.
The appropriate solution of equation (12), vanishing for V¥ = o, is
simply

where A 1is a real quantity to be determined by the boundary condition
at the surface, namely, ¥ =0 and ¥y = e cos X. Then

x=@ - eA sin ¢
and

cos X = BA cos ¢

To the zeroeth order of e, cos x =~ cos ¢§ and, therefore, A = l, or

x=¢--§—e-ﬁwsin¢

(21)

%y=%¢+ e"B‘l’cosQf

£
B
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With 2z = %-eiw; the appropriate general expression for 2z, can
be obtained from equation (18) and is

L _
oo = 1 2E 1M, (B + l)eaiw _ ei(w-w) .
2 8 gh

oo} f o

2 A
Mo [ 4 20 1M ) ~20W L 20V, 6
62 K g2

vhere B and C are real quantities to be determined by the boundary
condition at the surface, that is, ¥ =0 with y = € cos x. Therefore,

2 2
x=¢--§-sin¢—(§-> %Mm21+5L+lM-PP— + p°B|sin 2f

B 4 g2
(22a)
and
\ 5 W 2
cos x = cos @ + £ {- ;:Mw cos 2f + (y + 1) = (1 - 2 cos 2¢> +
B 8 B2 4
8B cos 2¢ + p°C (22b)

From equation (22a), to the first order of /B,

cos x ~ cos §§ + %.g (1 - cos 2¢)
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Hence, comparison with the right-hand side of equation (25b) shows that

L
B-_Lyly2_ 3 ¥y

and
2~ _ 1 1M4
BC ==42FtL "o
2 8 B

Thus, to the second order of e/B,

3
x=¢ - %e"wsin ¢+ %(ﬁ)e 14p2 21 My (2BV + l;Je"Eﬂ‘l’sin o¢

L 32
(23a)
and
m H M 4
%y=%\#+%e-5‘l’cos ¢+l(i) 1+21_1% '23‘*’%1—;;+

. |
<1-7+1M4‘2°-chos2¢ (23v)
Lop
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Again, with 2z = % eiv, equation (19) leads to the general expres-

sion for 23:

2 4 2 _
- _ 1M 2y -3iW y + 1M, 2 y + 1 My {| i(w-2W)
Zz = §EB3 (1 + p°)e + 1 5% _B M, <l+_—lL —B2>[e -

- 2 4
1+ d e ko g2y ) e Ly 4 1) M pyedtv -
3 3 2 8 62

2

2 L —
5+ p2 420y +1) M _L(y 1) Y foi(aww) | Jp, g2y
g2k B? '

2 i _
(7+l):—°29—-%(7+1)2%}1("'2") - [l+%—52+

2 4 ~
2 (y +1) l%i— e—Biﬁ ¥ r+1 L-Iil:(l + 28$)2e3iw . thei(Zr-w) )
9 B b g2

(1 + 2B¢)ei(w-2WZ| + 1De™ + 1EeTY (2k)

Where D and E are real quantities to be determined by the boundary
condition at the surface, that is, ¥ =0 with y = € cos x. Therefore,

5 4
x=¢_%sin¢+%;(§-) <l+52-t£—-12%—)81n2¢+3.P.z3
B

(25a)
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and

2
cos x =cos § + = £ (L - cos 2¢) + (%) - —el'EMmz(l + B2)cos 3¢ +

28
4 2 4
7+ 1M, 2 Mo .1 Mo
5 E_— [—4-33 —3(7+l)BT+§(7+1)-B?JCOS¢+

2
L2+§52_%(7+1)1-d;;]0053¢ + 87D cos ¢ + B°E cos 3¢
B

(25p)

Now, from equation (25a), to the second order of e/B,

)
2
cosxz-;--g-+ l—%(%) <2+ Be-%}-l;%) cos¢-%§-cos ¢ +

A
2
1l/e 2 7+ 1M,
' =/& ) - _
8(]3) < + B 1& 52>COS 3¢

Comparison of this expression with the right-hand side of equation (25b)
shows that

2 k

4
- _l_1.2, 7+1M, 2 ‘ Mo 1 Mo
8D 5P 5 =~ l%JrBB +3(7+l)ﬂe 2(7'+l)‘32
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pIE =

B

Lg2 _ 1 gh, y+1M 242,2 M2
e B - B+ g BQ[ $p +9(7+l)‘32

Thus, to the third order of ¢/B,
2 y
x=¢ - £ eBVsin ¢ + L€ 1+g2_2'_+_lM_sz.(2w+1)e‘eﬁ‘”sin2¢+
B hig L 32

2

325

3
(E> Lolge z2illls, e £ 3(y + 1) T
y 8 g2

N
1 My -BY¥ 1,12 1 b\ -3y
2(74‘1);{] e Siﬂ¢—(-5+—8-ﬁ —l—éﬂ)e BSin3¢+

l{- 2 b
r+ 1M 3By 2—32+(7+1)h-12¢—+l(7+1)¥‘-’9-—!3\11 sin § -

2
5—%6 + = (7+l)E—+l(7+l)M°°]sin3¢~

L

p—

! M2 m,"
1++-(7+l)—-+—-(7+l) ©. |8y sin 3¢ -
B B

i
(7 + 1) %‘g- (8¥)%sin 3¢ (262)
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=

+ 1
32 B

R

!

o

4 y 2 1+
5+5B +3(7+l)-—--—(7+l) e'chos¢+
B !3

L
1,1 -3y + 1M, -
(h+8B> cos3¢+732 - e OPY -[}++3B2+

B

2 Y - 4
M 1 M M
3(7+l)gg——§(7+l)Eg—+g(7+l)gg—5\£|cos¢-

L b 5 b
cos 3§ + 3'*‘ B —(7+l)_m_+2(7+1) By cos 3¢ +
3 B= B2

Wi

1;
(7 + 1) Z= (py)2co0s 3¢ (26b)
B2
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For constant values of the stream function ¥ 2 0, equations (26) com-
prise the parametric equations of the streamlines. The corresponding
equations for incompressible flow are obtalned by putting M_ =0 or

B = 1; that is,
x=0¢- ce ¥sin ¢+ %-Gze_ZWSin ¢ + g'€3(e—¢51n ¢ - e Vsin 3¢) e

(27a)

Y=+ e Veos ¢ + ;—' 62(1 - e Heos 2¢) -

% es(e"\*’cos ¢ - e=MNeos 5¢) oo (27v)

As an example of the comparison of streamlines in incompressible
and subsonic compressible flows, consider the case of ¢ = 0.6k,
M=0.60 or B=0.80, and ¥ = 2.5. The choice of 0.64 for e would
normally be too large if flow properties were to be calculated at the
boundary itself with the aid of equations (26). Because of the presence
of the exponential terms in these equations, however, a rather distant
streamline such as V¥ = 2.5 can be accurately determined. Thus, equa-
tions (26) become

x =@ - 0.0495 sin ¢ + 0.0030 sin 2¢ - 0.0008 sin 3¢ + . . .
and
¥y = 2.7865 + 0.0772 cos § - 0.0036 cos 2§ + 0.0005 cos 3¢ + . . .

Equations (27), for a neighboring Incompressible streamline given by
¥ = 2.6, become

x =@ - 0.0402 sin ¢ + 0.0011 sin 2@ + . .
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and
¥y = 2.8048 + 0.0402 cos ¢ - 0.00lL cos 2 + . . .

A comparison of these two sets of equations shows at a glance the well-
known general result that disturbances caused by the presence of a solid

boundary die out more slowly for compressible flow than for incompress-
ible fiow.

CONCLUDING REMARKS

The use of the veloclty potentilal ¢ and the stream functlon V¥
a8 independent variables is not new in aeronautical literature., A. Thom
and his students (particularly L. C. Woods) at the Oxford Engineering
Laboratory have for years utilized incompressible ¢ end Vv as inde-

pendent variables with the veloclty vector components log % and ©

(hodograph plane) as dependent varisbles. Numerical relaxation methods
were especlally developed for the ¢, Y-plane and employed in the solu-
tion of a number of diverse problems in both incompressible and compres-
gible flows, including mixed subsonic and supersonic flow. In the
present paper, the investigation is completely analytical and is confined
to the physical-flow plane. In fact, the compressible velocity potential
and stream function are thought of as presenting a set of orthogonal
curvilinear coordinates assoclated with the shape of the solid boundary
in the flow plane. The solution of a given flow problem is then expressed
in the form of a pailr of equations transforming the dependent rectangular
Carteslan coordinates x and y into the independent orthogonal curvi-
linear coordinstes ¢ and V.

Langley Aeronauticeal ILaboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., May 17, 195k.
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